DOUBLE STRANDED POLYNUCLEOTIDES: TWO TYPICAL ALTERNATIVE CONFORMATIONS FOR NUCLEIC ACIDS

V. SASISEKHARAN AND N. PATTABIRAMAN
Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012

Abstract

Two typical alternative conformations for double stıanded polynucleotides wih watsor-Crick base pairing scheme are peesented. These typcs avoid tangling of the two ch: ins. Represcritative models of these types with two different vieus, to show the similarity ar:d dissimileity betucen these models and the Watson-Crick model, are given.

Introduction

TWHE well-known Watson and Crick model ${ }^{1}$ for DNA is a right handed double helix. Our extensive work, carried out on the analysis of helical conformations for double stranded polynucleotides with antiparallel chains revealed that both right and left handed double helices are stereochemically possible. Based on our analysis, a type I model, employing Watson-Crick base pairing and conformations for the nucleotides, as observed in single crystals, was presented* in which the polynucleotide chain had both right and left handed segments. This immediately avoids the tangling of the two chains and hence has, in addition, other advantagious features over the Watson-Crick model. Since then

Typo 1
(a)
b)
(r)

Fig. 1. (a) Schematic diagram of right and left handed helices: (b) Polynucleotide backbone: (c) The two types of linking right and left segments

[^0]a detailed conformational analysis carried out by using an IBM 360/44 computer has revealed two typical conformations based on the orientations of the sugars of the chain. These two types of conformations are energetically more favourable than the Watson-Crick double helix. The present paper outlines these two alternative conformations.

Right and Left Handed Double Helices

Figure 1 (a) shows the schematic diagram for r ght and left handed double helices (with antiparalle! chains) with base pairing shown as dotted lines. The dihedral angles (which are restricted) ${ }^{2}$ about the various single bonds in the backbone and the side chain (base) dihedral angle about the glycosidic

Jik. 2. Shematic view of the mads (l) re: 1 and (I) to , how lateral separation of the the chatims.
bond ate hown in lig. 1 (b). Ihe region of bochbone dibedal angles for the pussible sight abt keft handed double helical confonatation have atrady
been given". Further analysiz of the regular helices with antiparallel chains and with the number of residues per turn $n \simeq 10$ and height per turn $h \simeq$ 3.4, restricted these possibilities to a few. Suffice it to say, that sterically both left and right handed conformation can be obtained with $g g, g t$ and $1 g$ conformations about the $C_{4}-C_{5}^{\prime}$ bond with the corresponding conformations about the $\mathrm{P}-\mathrm{O}$ bonds. Most interestingly, our analysis of the conformation about the glycovidic bond (for a nearly perpendcular orientation of the bases as in B DNA) indicates tho a ternating regions for right and left handed helices. These are (a) for the right handed helix (1) normal anti rigion $x<90^{\circ}$ and (2) syn region $180^{\circ}<x<240^{\circ}$, and (b) for the left handed helix (1) low anti region $x=0^{\circ}$ and (2) high anti region $x>90^{\circ}$. The exact value in each case would depend on the backbone dihedral angles as well as the puchering of the sugar. The flexibility of the sugar puchering was taken into account as described earlier:- It may be worthuhile to mention here that right and left handed helices can have the same radiry for the phosphoius atom ($\sim 9 \AA$) but at the same time have different radii for the $\mathrm{C}_{1}{ }^{\prime}$ atom. In such a case the radius of $\mathrm{C}_{1}{ }^{\prime}$ atoms in the left handed helix is larger by $0.5 \AA$ than the rad us of the $C_{1}{ }^{\prime}$ atoms in the right handed belix. However, the Fourier transforms of both the models are very similar. The other features of the right and left handed double helices will be discussed in grcater detail elsewhere.

The Two Types of Conformations: I and II

There are two typical ways [Fig. 1 (c)] by which the right and left handed segments can be joined to form a double stranded polynucleotide chain having Watson-Crick base pairing but which would avoid tangling. For a repeating unit of ten base pairs, rougbly half a turn of the right handed double helix can be linhed to the corresponding half a turn of the left handed double helix. In type I, the right leanded serments $A_{R} A_{R}{ }^{\prime}$ a.dd $B_{R} B_{1}{ }^{\prime}$ are joined to the left handed segments $A_{\mathrm{L}} \Lambda_{\mathrm{L}}{ }^{\prime}$ and $\mathrm{B}_{\mathrm{L}} \mathrm{R}_{\mathrm{\prime}}{ }^{\prime}$ respectively. If the left and right handed segments are joined this way, the orientations of the sugars of the chain are in the same direction (shown in the diagram by the vectors $\mathrm{C}_{2}{ }^{\prime} \rightarrow \mathrm{O}_{1}{ }^{\prime}$). In the type II structure, the right handed segments $A_{R} A_{R}{ }^{\prime}$ and $B_{1 R} B_{R}{ }^{\prime}$ are joined to the left handed segments $B_{\prime^{\prime}} B_{L}$ and $A_{L}{ }^{\prime} A_{L}$ by an inversion of the left handed segment such that the chain directions 5^{\prime} to 3^{\prime} and 3^{\prime} to 5^{\prime} are preserved. In such a structure the sugars in the right handed segment are pointing roughly orposite to the sugars in the left handed segment (shown by the vectors $\mathrm{C}_{2}{ }^{\prime} \rightarrow \mathrm{O}_{1}{ }^{\prime}$).
Both the type I and type II structures involve folds' or 'bends' along the chain and these folds
occur in pairs approximately after every five base pairs. Since there is flexibility about the backbone of the polynucleotide chains', there can be a family of folds. In the representative models for each type shown, we have used the types of fold which we consider as plausible. Apart from the types of folds, the main feature of both the stuctures is the value of χ for the base pair. In the type I structure, if a normal anti conformation ($\chi<90^{\circ}$) is used for the right handed segment, then the left handed segment has a value for $x>90^{\circ}$ (high amti region). In type II, for the normal anti conformation of the right segment, the left segment has $x \approx 0$ (low anti region). Similarly, for the syn conformation of the bases in the right handed segment, both types I and II are possible, but with the x values interchanged for the left handed scgments. The syn conformation was not investigated further.

Thus in both types I and II, the two polynucleotide chains have a wavy stiucture and avoid intertwining (Fig. 2). Both have alternating right and left segments along the length of the chain and have a pair of folds in each repeating unit. In type I, the sugars point roughly in the same diection in both the segments which have normal bases stacked. In type II, the sugars in the adjoining scgments are inverted ; that is, point in opposite directions. This structure has the base in the adjoining segments in inverted positions and stacked accordingly.

'The Need for Folding

It is clear that as the conformational energy difference between the various types of backbone conformations of the monomer unit of the polynucleotide chain is small ${ }^{3}$, the conformations of the chains are mainly determined by the base-base interactions apart from hydrogen bonds. As the Watson-Crick base pairing has been maintained in our models, the essential difference between our two structures and the Watson-Crick model lies in the mode of stacking of bases. The stacking energy between any two bases in different orientations and when separated by various distances was therefore investigated. A detailed report is under preparation (Sasisekharan and Gautam Gupta). The results of interest to us are the following: In the case of cytosine (C), stacking is achieved only for interactions between normal C and inverted C. The normal base-base interaction is repulsive and becomes attractive only when one C inverted. This agrees with the calculations reported earliers ; similar conclusions hold for G-G interactions. Thus a G-C pair followed by another G-C pair will be highly stable when one of the G-C pairs is inverted; the energy difference is more than $10 \mathrm{kcals} /$ mole. Thus a C-C (or G-G) base sequence along the polynucleotide chain can bring about a fold in type II.

(3 b)

Fig. 3. A Model of type I-Two views.

Fic. 4. A Model of type II-Two views.

For $A \rightarrow A$, both (normal bave)-(normal base) interactions and (nornal bave)-(inverted bave) interactions have nearly the same energy. For T-T, the normal (base)-(base) interaction is small; however, it is lower than the interaction energy between a normal base and an inverted base.

In the cave of purine-fyrimidine (or pyrimidinepurine) sequences (normal base)-(normal base) staching is favoured. However, depending upon the sequence, either a right or a left stacking of bases is preforred. Thus, in a sequence $G p C$, the stacking i.s right handed uhereas in CpG the staching is left handed. As a convequence, sequences like CpG can involve a right to left fold in type I. Similarly, for ApT and TpA respectively, right and left stacking of bases can occur; however, the energy difference is small.

Representative Models of Types I and ll

A representative model for type I with two different views is shown in Fig. 3. Here, we have used the $g g$ conformation about the $\mathrm{C}_{4}{ }^{\prime}-\mathrm{C}_{\overline{9}}^{\prime}$ bond for the right handed segment of the chain ${ }^{\prime}$ and $g t$ conformation for the left handed segment of the chain. The $\mathrm{g}^{\prime t}$ conformation has already been observed in a crystal structure ${ }^{7}$. It may be worthwhile to mention that the $g g$ conformation for the left handed segment is also possible for this model. As regards the two types of folds, one involves a change from $g g$ to gt conformation about the $C_{4}{ }^{\prime}-\mathrm{C}_{5}^{\prime}$ bond as has been used in the kinky helix ${ }^{3}$. The other involves a change from gg to $\mathrm{t} g$ conformation. Again, the 1 g conformation has also been observed in a crystal structure ${ }^{9}$. For the right handed segment, the $\mathrm{C}_{2}{ }_{2}^{\prime}$ endo conformation for the sugar has been used. For the left handed segment the C_{3}^{\prime} endo sugar has been used.

A model for type II with two different views is shown in Fig. 4. The conformation employed about the $C_{4}^{\prime}-C_{5}^{\prime}$ is $g g$ for both the right and the left handed segments. The sugar puckering employed is $C_{2}{ }^{\prime}$ encio in the right handed segment and $C_{2}{ }^{\prime}$ endo $-C_{1}{ }^{\prime}$ exo for the left segment. Here one fold is achieved by employing $\mathrm{g}^{+} \mathrm{g}^{+}$conformation about the P-O bonds. This conformation has been observed in two crystal structures ${ }^{1011}$. The other fcld is achieved by slight modifications of the conformations about the various single bonds that are employed for the right handed segment. One view of bo!h the types resembles the typical WatsonCrick model. However, the other view, taken at 90° from the first one, reveals marked differences and clearly shows the lateral separation of the two chains without intertwining.

Other types of puckering could be employed in both these models. Also, the puckering
of the sugars at the foids could be different. In both the models we have maintained the radius of the pho phorus atom to be very nearly 9 A. This could also be varied if necessary, and the width of the two segments could also differ.

The Fourier transform of these models has not been computed, as the mathematics of the same has to be worked out. However, the Fourier transforms of the corresponding left handed and right handed helices are similar. It is clear that these types of structures could be built with folds at other levels and not necessarily after every five base pairs. These types of arrangements have more degrees of freedom and hence flexible. As the models presented here are tentative, we do not wish to discuss their geometrical properties. Full detaiis of the two structures will be published elsewhere.

Conclusions

The purpose of the present paper is to show that double-stranded polynucleotide chains having base orientation as in B DNA can be constructed in two typical ways without tangling. The two types of arrangements appear to bend more readily than the conventional double helix. The preliminary model building indicates that a minimum of three base pairs are necessary between any two folds. In a nucleic acid chain, where we have a sequence of bases, we believe that both the typas could be present in a single molecule. In such a case DNA need not be a double helix throughout and such a structure has a number of attractive features and these will be dealt with elsewhere.

Nole: A paper "A passible conformation for double-stranded polynucleotidcs" has just appeared in the Procecdings of the Nat onal Academy of Sciences, USA, Vol. 73, No 9, 1976, pp. 29592963) which describes a model similar to the type I structure presented heie. We thank Professors H. Sharat Chandra and 0 . Siddiqi for drawing our attention to this report.

Acknowledgements

We wish to thank Prof. G. N. Ramachandran for his keen interest. We thank the Science and Engineering Research Council, of the Department of Science and Technology, Government of India, for financial support. One of us (N. P.) acknowledges financial assistance from the University Grants Commission in the form of a Junior Research Fellowship.

1. Watson, J. D. and Crick, F. H. C., Nature, 1953, 171, 737.
2. Sasisekharan, V., The Jerusalem Symposium on Quantum Chemistry and Biochemistry, Vol. V, 1972, p. 247.
3. Lakshminarayanan, A. V. and Sasisekharan, V., Biopolynters, 1969, 8, 489.
4. Sasisekharan, V. and Lakshminarayanan, A. V., lbid., 1969, 8, 505.
5. Pullman, A. and Pullman, B., Advances in Quantum Chemistry, 1968, 4, 267.
6. Arnott, S., Dover, S. D. and Wonacott, A. J. Acta Cryst., 1969, B 25, 2192.
7. Seshadri, T. P. and Viswamitra, M. A., Pramāna, 1974, 3, 218.
8. Crick, F. H. C. and Klug, A., Natutre, 1975, 255, 530.
9. Viswamitra, M. A., Seshadri, T. P. and Post, M. L., Ibid., 1975, 258, 542.
10. Suck, D., Manor, P. C., Germain, G., Schwalbe, C. H., Weimann, G. and Saenger, W., Nature New Biology, 1973, 246, 161.
11. Rubin, J., Bernnan, T. and Sundaralingam, M., Biochemistry, 1972, 11, 3112.

[^0]: * At the Divisional Review of the Chemical and Biological Sciences, Indian Institute of Science, Jangalore, February 23, 1976.

